Традиционные пластмассы удобны, но небезопасны для окружающей среды Традиционные пластмассы, используемые в качестве упаковочных материалов, обеспечивают товару надежную защиту от загрязнения, повреждений и разложения, а поэтому по праву считаются незаменимым продуктом. Но, как это часто бывает, наряду с неоспоримыми достоинствами эти материалы имеют и ряд существенных недостатков. Для получения традиционных пластмасс необходимо использовать невосполнимые природные ресурсы, что в итоге приводит к истощению последних. Более того, традиционные пластмассы в природных условиях очень стабильны, а это означает, что они будут оставаться в своем первоначальном виде в течение очень долгого времени. Срок пригодности к использованию пластмасс намного дольше срока годности косметических, химических или пищевых продуктов, упакованных в изготовленную из них тару. На упаковку расходуется 22% всех используемых в мире пластмасс, причем большая часть этой упаковки является одноразовой, заканчивающей свою жизнь на муниципальных свалках. Так или иначе, пластиковые контейнеры необходимо перерабатывать или уничтожать, однако чаще всего они оказываются на мусорных свалках, где лежат, не разлагаясь, десятилетиями, а то и дольше. Поскольку мусорные свалки постепенно заполняются пластмассовыми отходами, а количество новых свалок и площади под них весьма ограничены, поэтому вопросы о вреде, наносимом свалками здоровью, экономике и окружающей среде, становятся все более актуальными. Муниципальные власти и экологи ищут альтернативные пути утилизации этих материалов. Переработка использованных пластмасс (ресайклинг) является одним из таких путей [1, 2], но он применим лишь к ограниченному количеству видов пластмасс. К тому же серьезную проблему представляет поиск рынка сбыта переработанного материала, имеющего, как правило, худшие качественные показатели по сравнению с нативным. Кроме того, перед началом переработки требуется сортировка пластика по виду, цвету, что удорожает стоимость процесса вторичной переработки. Компостирование представляет иной подход к утилизации, который во многих случаях более предпочтителен, однако для его жизнеспособности необходимы пластмассы, способные полностью и безопасно разлагаться в естественной среде. Такие полимеры уже существуют или находятся в конечной стадии разработки [3-5]. Биополимеры как экологически безопасная альтернатива Эти новые материалы по своим характеристикам не уступают, а подчас даже превосходят традиционные пластмассы. В условиях грамотного компостирования биополимеры полностью разлагаются на такие безвредные компоненты, как вода, углекислый газ и гумус, которые естественным образом участвуют в природном цикле. Другим существенным преимуществом биоразлагаемых пластмасс является их сырьевая база: эти полимеры производятся из растительного сырья (типа кукурузы, картофеля, древесины или свекловичного сахара), которое, в отличие от полезных ископаемых, является воспроизводимым, что способствует сохранению последних для будущих поколений. Кроме того, культивирование такого растительного сырья открывает новые возможности роста для сельскохозяйственной отрасли. Для изготовления тары, одноразовой посуды уже широко используются материалы из крахмала, а также целлюлозы, лигнина и их модификаций, например, целлофана. Из множества предложенных биоразлагаемых пластмасс полиагидроксипропионаты — иначе говоря, полимеры молочной кислоты, полилактаты (ПЛ) — становятся, по-видимому, наиболее перспективным заменителем традиционных пластмасс, т. к., помимо прекрасных физико-механических свойств, они поддаются с незначительными модификациями обработке на обычном экструзионном и выдувном оборудовании. Помимо этого, ПЛ достаточно универсальны. Так, из них можно получать пластмассы, имеющие разные технические характеристики. Тем не менее ПЛ отнюдь не являются единственным биоразлагаемым полиэфиром: полигидроксибутираты и полигидроксивалераты также достойны упоминания. Все эти полимеры могут найти свое специфическое применение с учетом ограничений, обусловленных их природой, ценой, скоростью разложения. Мономером для производства ПЛ служит молочная кислота с химической формулой СН3-СН(ОН)-СООН. Молочную кислоту получают ферментацией углеводов (глюкозы, сахарозы, лактозы) или неочищенного сырья (крахмала, патоки или молочной сыворотки) с помощью бактерий типа Lactobacillus, Pediococcus, Lactococcus и Streptococcus, а также некоторых грибковых штаммов типа Rhizopus Oryzae. Молочная кислота вступает в реакцию объемной поликонденсации с получением хрупкого стекловидного полимера. Этот полимер имеет невысокую молекулярную массу и, как правило, находит ограниченное применение.
Физико-механические свойства ПЛ Помимо способности к биологическому разложению, ПЛ обладает свойствами, позволяющими поставить ее в один ряд с традиционными пластиками, используемыми в производстве упаковки. Благодаря этому ПЛ может с успехом заменить полимеры на основе нефти и газа без больших инвестиций в технологическое оборудование. В табл. 2 и на рис. 2 дается сравнение ПЛ с некоторыми традиционными пластмассами, используемыми в производстве упаковки.
Сферы применения ПЛ По своим свойствам высокомолекулярный ПЛ сходен с полиэтилентерефталатом (ПЭТ) и так же, как ПЭТ, используется для производства бутылок. Благодаря своим природным свойствам, позволяющим получать материалы с различной структурой, от хрупких термопластов до резин, полилактаты являются универсальными полимерами и, помимо упаковки, находят широкое применение в различных областях легкой промышленности. В табл. 3 приведены некоторые типичные примеры использования ПЛ, где они себя отлично зарекомендовали. Полилактаты и зеленое законодательство В настоящее время законопроект, направленный на создание императивных норм по сбору, сортировке и обработке бытового мусора, находится в стадии подготовки как на национальном, так и на межгосударственном уровнях. В Евросоюзе механизмом запуска работ по законопроектам и стандартизации, касающихся отходов упаковки, стала Европейская директива 94/62/ЕС от 31 декабря 1994 г. В этой директиве процедура компостирования прописана как неотъемлемая часть схемы утилизации отходов. ПЛ отвечает всем техническим требованиям, предъявляемым к упаковочным материалам (а часто даже превосходит эти требования). Поэтому они представляют собой лучшую альтернативу традиционным пластикам с точки зрения необходимости резкого сокращения количества пластикового мусора, отправляемого на муниципальные свалки. На настоящий момент, помимо использования ПЛ, полисахаридов и некоторых других биоразлагаемых полимеров, не существует иных способов утилизации пластиковых отходов, которые были бы, с одной стороны, экономически оправданными, а с другой - безопасными для природы и здоровья людей.
Доля ПЛ на мировом рынке Потребление полилактатов только на рынке пленок и нетканых волокон в 2003 г. составило 122 тыс. т/г и, согласно последним прогнозам, достигнет 390 тыс. т/г в 2008 г. и от 1184 тыс. до 1 842 тыс. т/г к 2010 г. Эти прогнозы, с одной стороны, представляются вполне реалистичными, а с другой стороны дают повод для беспокойства, так как указанные выше количества ПЛ закроют потребности только малой части существующего рынка полимеров, традиционно используемых для изготовления упаковки. Одним из ограничивающих факторов завоевания рынка полилактатами до недавних пор была относительно высокая цена продукта но, с учетом запускаемых высокопроизводительных заводов по производству ПЛ, этот фактор быстро теряет свою значимость и перестанет ограничивать процесс замещения традиционных пластиков полимерами на основе ПЛ. Ценовая рыночная модель, разработанная группой PST, со всей очевидностью свидетельствует, что, по достижении мирового производства ПЛ 900 тыс. тонн в год, его рыночная цена станет вполне конкурентоспособной по отношению к цене тарных полимеров на основе нефтепродуктов [6].
Стратегическая важность ПЛ для Евросоюза Сегодня молочную кислоту, используемую для получения ПЛ, получают ферментацией углеводов растительного происхождения, а именно гидролизатов сахарозы и крахмала. С целью уменьшения затрат при производстве ПЛ предложены также другие сырьевые компоненты, извлекаемые из агрохимических отходов, в частности, черная патока (меласса) и сыворотка. Однако затраты на очистку ПЛ, полученной из такого сырья, резко возрастают с уменьшением чистоты используемого субстрата. В Европе сахарозу, как правило, получают из сахарной свеклы, а крахмал — из пшеницы и, в меньшей степени, из картофеля или кукурузы. В США основным источником крахмала является кукуруза. Производство 390 тыс. тонн ПЛ в год (2008 г.) потребует отвода 70 тыс. га, 187 тыс. га и 121 тыс. га сельскохозяйственных угодий под сахарную свеклу, пшеницу и кукурузу соответственно. Это соответствует 3,3%, 1,9% или 2,0% средней посевной площади, используемой под эти культуры в пятнадцати странах ЕС. Здесь стоит учесть исследование, опубликованное Евросоюзом, где говорится о том, что 25% имеющихся сельхозугодий оцениваются скорее как ненужные для производства продуктов питания, что соответствует 30 млн га (Европейская Комиссия DG XII, 1994). Если в этом случае внедрение биополимеров на мировой рынок не сможет в полной мере обеспечить решение вопроса утилизации пластмасс, то, по крайней мере, оно даст значительный вклад в доходные статьи агросектора Евросоюза. Помимо этого неоспоримого преимущества, следует отметить как весьма желательное (со стороны Евросоюза, США, Японии, Китая и ряда др. стран) уменьшение зависимости от импорта нефти для производства пластмасс.
Packaging R&D |