Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ рынка резиновых спортивных товаров в России
  • Анализ рынка медболов в России
  • Исследование рынка порошковых красок в России
  • Исследование рынка минеральной ваты в России
  • Исследование рынка СБС-модификаторов в России
  • Анализ рынка подгузников и пеленок для животных
  • Исследование рынка впитывающих пеленок в России
  • Анализ рынка куллерных преформ в России
  • Анализ рынка маннита в России
  • Исследование рынка хлорида кальция в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    Новинки

    ПОЛИМЕРНЫЕ КОМПОЗИЦИИ: смешиваемость и совместимость


    Процессы, которые происходят при смешивании и совмещении различных полимерных материалов понимаются всеми неоднозначно. Автор «без излишней научности» пытается объяснить суть процессов смешения и совмешения компонентов в полимерных композициях.


    Контактируя со многими производителями полимерных композиций, я обратил внимание что процессы , которые происходят при смешивании и совмещении различных полимерных органических материалов или полимеров с неорганическими наполнителями понимаются всеми неоднозначно. И это было бы вполне естественно, если бы не затрагивало некоторых базовых понятий, нужный для правильного понимания этих процессов.

    Постараюсь, без излишней «научности», используя максисум «прикладного подхода» обьяснить суть процессов смешения и совмешения компонентов в полимерных композициях.

    1Miscibility ( миссибилити – или по русски «Смешиваемость»). Разумеется здесь имеется ввиду ТЕРМОДИНАМИЧЕСКАЯ смешиваемость. Если два полимера термодинамически смешиваются , то можно говорить ,что полимер А и Б –miscible( миссибл-т.е. «смешиваемые») , если нет , то полимеры А и Б  - immiscible ( иммиссибл – к друг другу). А как узнать смешиваем ли полимер А с полимером Б заранее?......... И можно ли избежать эмпирических опытов на первом этапе?

    Ответ простой : Да, можно.

    Существуют таблицы термодинамической совместимости полимерных материалов, по которым можно уже на первом этапе, « грубо» определить miscibility
    ( термодинамическую смешиваемость) того или иного полимера по отношению к другому полимеру, который планируется ввести в композицию

    Вид таких таблиц приведен ниже.

    Поверхностная

    энергия
    464645 434338 4139 39 373632 323030
     Полимер PCPACAPET TPUABSPSUPMMAPVC PPOPOMPSEVAPBT PEPP
    46 PC S1  S S S S  S   n  S n n
    46 PA l S  S       n   l l
    45 CA   S  S S   S n  n l S n n
    43 PET S   S  S           
    43 TPU S S S  S S   S n  n  S n n
    38 ABS S  S S S S  S S n  n  S n n
    41 PSU S      S          
    39 PMMA      S  S S   n   l l
    39 U-PVC S  S  S S  S S n  l n S l l
    42 PPO   n  n n   n S  S  n  l
    37 POM           S n   l l
    36 PS n n n  n n  n l S n S S n n n
    33 EVA   l      n   S S  S S
    32 PBT S  S  S S   S   n  S n n
    30 PE n l n  n n  l l  l n S n S l
    30 PP n l n  n n  l l l l n S n l S
     S orS Satisfactory l limited n Not satisfactory


     

    SS – Удовлетворительное; L – Ограниченное; N   - Неудовлетворительное

    Цифры напротив обозначений полимеров – это значения поверхностной энергии ( в дин/см)

    ПОВЕРХНОСТНАЯ ЭНЕРГИЯ, энергия, сосредоточенная на границе раздела фаз, избыточная по сравнению с энергией в объеме Термин "поверхностная энергия" применяют обычно для границы твердое тело-газ (пар); если граничащие фазы суть твердое тело и жидкость или две несмешивающиеся жидкости, пользуются термином "межфазная энергия".

    Стандартный тест на поверхностную энергию. Состоит из 10 бутылочек по 30 мл

    Используя карандаш со специальной жидкостью с определенной поверхностной энергией (например  38 dynes/cm ) можно определить подбором поверхностную энергию тестируемого материала

    Еще один, самый простой способ определить степень активации поверхности – это попробовать смешать активированный порошок с таким полярным раствором как ВОДА. ( у воды пов. энергия -72 dyne/cm ) . Этот метод особенно удобен для экспресс проверки активированности порошков.

    Если порошок хорошо диспергируется в воде , то можно с уверенностью говорить что он активирован и поверхностная энергия не ниже 70 dyne/cm

    Удобно также использовать и другие жидкости для экспресс-анализа поверхностной энергии активированного материала ( Смотри ниже).

    Смачивание.

    При контакте жидкости с твердой поверхностью говорят о смачивании.

    При контактном смачивании свободная поверхность жидкости около твердой поверхности (или около другой жидкости) искривлена и называется мениском . Линия, по которой мениск пересекается с твердым телом (или жидкостью), называется периметром смачивания.Явление контактного смачивания характеризуется краевым углом между смоченой поверхностью твердого тела(жидкости) и мениском в точках их пересечения (периметром смачивания) В зависимости от свойств соприкасающихся поверхностей происходит смачивание (вогнутый мениск) или несмачивание (выпуклый мениск) поверхности жидкость

    Поверхностная энергия некоторых материалов

    Ну и к чему все эти цифры???......   Все очень просто. Вы уже поняли , что для хорошей термодинамической смешиваемости материалов нужно добиться того, чтобы значения их поверхностных энергий были очень близки.

    Ну допустим это понятно .....Но как добиться хорошей смешиваемости материалов если они изначально НЕСОВМЕСТИМЫ и их поверхностные энергии разительно отличаются???

    Это можно сделать 2-мя способами:

    1. Поверхностная модификация одного из материалов

    2. Подбор нужного Компатибилизатора

    Что выбрать, зависит от конкретной полимерной композиции и целевых показателей , которые планируют получить.

    Ну например, чтобы наполнить полипропилен тальком ( до 10%), достаточно ввести тальк без какой либо модификации либо с 0.5-1 % стеарата кальция . Физ.мех.характеристики будут вполне приемлемы. Термодинамическое смешение отличное и без компатибилизации.

    Однако если наполнение увеличить до 30% и выше, немедленно будут наблюдаться проблемы. Расслоение материалов, термодинамическая несовместимость.
    В этом случае уже без компатибилизации не обойтись.

    Другой пример со стеклом. До 5 % стекло можно ввести без компатибилизационных техник, достаточно иметь качественный базовый ПЕРВИЧНЫЙ полимер. Т.е. термодинамическое смешивание присуствует . Но если процент наполнения выше , скажем 10% либо 30 % - применение компатибилизаторов обязательно.  

    Т.е. важно не только понимать совместима  ли  система «полимер-полимер» или «полимер-наполнитель», но и учитывать СООТНОШЕНИЕ ( RATIO) компонентов композиции. 

    2. Compatibility ( Компатибилити – по русски: Совместимость) – это еще одно базовое понятие которое необходимо однозначно понимать.

    Т.е. на что надо обратить внимание?

    --материалы могут быть miscible ( термодинамически смешиваемые) но incompatible( химически или физически несовместимы)

    - если материалы compatible ( т.е. химически или физически совместимы) , следовательно наверняка они имееют довольно близкие значения поверхностной энергии и будут miscible ( т.е. термодинамически смешиваемыми)

    Более подробно о химической и физической компатибилизации можно почитать на нашем сайте : www.goldenbrinx.ru

    Вывод: При создании полимерных композиций, особенно многокомпонентных , анализ MISCIBILITY( термодинамического смешивания)  и COMPATIBILITY ( химической или физической совместимости) –это наиболее профессиональный и правильный подход, позволяющий добиться самых высоких показателей композиции и исключить глупые ошибки.

    Итак, на практике мы  вышеизложенное можем применить следующим образом:

    1. Если нужно введение полимера или наполнителя менее 10 % ( оптимально 5-7%) , то возможно обойтись и вовсе без компатибилизации , так как для большинства полимеров такое количество будет приемлемо для достижения хорошего термодинамического смешения.

    2. О компатибилизаторах можно говорить , когда наполнение превысит 10% и до 50% включительно. С этим еще может справиться Компатибилизатор, но надо помнить ,что введение более чем  4-5 % компатибилизатора уже не улучшает, а ухудшает материал. Почему? –Ответ прост : матрица начинае отторгать компатибилизатор из-за переизбытка его реакционных групп  и нарушения термодинамического равновесия фаз.

    3. Если речь идет о высоконаполненных полимерах( например негалогенные антипирены – MD и ATH), в этом случае компатибилизаторы не эффективны. Они ( 4-5% )уже не могут справиться с наполнениеми превышающими 50% и единственным разумным путем с точки зрения технологической и экономической будет модификация самой матрицы

    Некоторые крупнотоннажные материалы , которые интересно будет производить

    1. Ударопрочный ( морозостойкий ) полипропилен

    • Механохимический синтез гибридного порошка PP/LDPE ( 10:90)

    • Газохимическая модификация гибридного порошка в реакторе

    • Экструзионный синтез морозостойкого (эластифицированного) PP (введение 30% модифицированного гибридного порошка в расплав PP при экструзии.

    2. Эластифицированный полиамид

    • Механохимический синтез порошка EVA

    • Газохимическая модификация  порошка  EVA в реакторе

    • Экструзионный синтез  эластифицированного  PA (введение от 10 % до 30% модифицированного  порошка EVA в расплав PA при экструзии.
         
    3. Трудногорючий PE ( негалогенный)

    • Механохимический синтез порошка PE

    • Газохимическая модификация  порошка  PE в реакторе

    • Экструзионный синтез трудногорючего V-0 PE (введение 65% негалогенных антипиренов – MD или ATH  в расплав модифицированной матрицы PЕ при экструзии.

    4.  Трудногорючий PA ( негалогенный)

    • Механохимический синтез гибридного порошка PE.

    • Газохимическая модификация  порошка  PE в реакторе

    • Создание гибридной матрицы PE/PA  в процесе экструзии

    • Экструзионный синтез трудногорючего V-0 PA (введение 65% негалогенных антипиренов – MD или ATH  в расплав модифицированной матрицы PЕ/PA при экструзии.

    Вышеупомянутые процессы технологичны просты и недороги. Никаких графтовых прививочных полимеризаций НЕ ТРЕБУЕТСЯ!!!

    Однако производитель высоконаполненных композиций должен иметь модификационную линию Графт-Полимер.

    Автор: Болдуев В.С. ( ООО «Графт-Полимер»)

    www.graft-polymer.ru

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    Материалы раздела
  • НОВЫЕ КОМПАКТНЫЕ ТПА ENGEL
  • ЗВУКОПОГЛОЩАЮЩИЙ ПОЛИЭФИРНЫЙ МАТЕРИАЛ V-LAP
  • АДГЕЗИВНАЯ КОМПОЗИЦИЯ на ОСНОВЕ ПОЛИЭТИЛЕНА
  • БАССЕЙН В ДОМЕ
  • ПЭТ ПЛЕНКИ TEIJIN ДЛЯ ЗАЩИТЫ от УФ-СВЕТА
  • ТОКОПРОВОДЯЩИЕ ПЛЕНКИ ELECLEAR
  • МАСТЕРБАТЧИ «УРАЛПЛАСТИКА»
  • БЕЗГАЛОГЕННЫЕ КАБЕЛИ «СЕВКАБЕЛЯ»
  • МЕТАЛЛИЗИРОВАННЫЕ CPP ПЛЕНКИ
  • НОВИНКИ В ОБЛАСТИ ОСТЕКЛЕНИЯ ТРАНСПОРТА
  • ШУМОИЗОЛЯЦИЯ BASF В КАБИНЕ «МИ-8»
  • АНТИКОНДЕНСАТНЫЕ ПЛЕНКИ
  • PACK-AGE – новая упаковка для сыра
  • ОБОЛОЧКИ АТЛАНТИС-ПАК для СОСИСОК В ГОФРОКУКЛАХ
  • ШЛЕМЫ И БРОНЕЖИЛЕТЫ ИЗ СВМПЭ на "INTERPOLITEX - 2012".
  • ПРОФИЛЬНЫЕ СИСТЕМЫ НА КРУПНЕЙШИХ СПОРТИВНЫХ ОБЪЕКТАХ
  • ГИДРОИЗОЛЯЦИОННЫЕН МЕМБРАНЫ DÖRKEN
  • АНТИМИКРОБНАЯ УПАКОВКА BIOMASTER
  • СОУСЫ «НЭФИС» в НОВОЙ УПАКОВКЕ
  • ИННОВАЦИОННАЯ УКУПОРКА KUTTERER MAUER
  • ПЯТНОСТОЙКИЕ ТКАНИ DUSTOP SP
  • СИСТЕМА ОТКРЫВАНИЯ HELICAP 23 ДЛЯ TETRA BRIK
  • НАДУВНЫЕ РЕМНИ БЕЗОПАСНОСТИ
  • ECOBAG – альтернатива полиэтиленовым пакетам
  • НОВЫЕ КОНТЕЙНЕРЫ «АЙ-ПЛАСТ»
  • ПОЛИЭФИРНОЕ МИКРОВОЛОКНО NANOFRONT
  • ПОЛИМЕРНО-КОМПОЗИТНЫХ ГАЗОВЫЕ БАЛЛОНЫ НЕ ВЗРЫВАЮТСЯ
  • ПЛЕНКИ ИЗ ПОЛИАРИЛЭФИРКЕТОНОВ
  • ЭКСПЕРИМЕНТ ПО ИСПОЛЬЗОВАНИЮ БИОРАЗЛАГАЕМЫХ МЕШКОВ
  • НОВОЕ ПРОИЗВОДСТВО КОМПОЗИТНЫХ ГАЗОВЫХ БАЛЛОНОВ
  • Все статьи
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved