Работа проводится в рамках Государственного контракта № 02.523.11.3011 от 15 августа 2007 г. по теме «Разработка технологии и организация производства сверхпрочных и высокомодульных углеродных волокон на основе ПАН-жгутов и ПАН-нитей из сверхвысокомолекулярного полиакрилонитрила». Известно, что обязательным условием получения из ПАН углеродных волокон высокой прочности является высокая степень ориентации макромолекул и, соответственно, высокая прочность исходного волокна, которая в общем случае должна возрастать с молекулярной массой полимера. Одним из перспективных направлений решения задачи получения высокомолекулярного ПАН-полимера является радиационная эмульсионная полимеризация (РЭП), так как позволяет удачно сочетать положительные стороны радиационного инициирования и эмульсионной полимеризации и получать полимеры высокой молекулярной массы. Цель работы – исследование закономерностей синтеза высокомолекулярного полиакрилонитрила методом радиационной эмульсионной полимеризации. ПАН-полимер представляет собой высокомолекулярный полимер акрилонитрила, двойной сополимер акрилонитрила и итаконовой кислоты или тройной сополимер акрилонитрила, итаконовой кислоты и метилакрилата следующего состава (мас. %): – содержание звеньев итаконовой кислоты 0-3; – содержание звеньев метилакрилата 0-5; – содержание звеньев акрилонитрила 92-100. РЭП проводили на лабораторной установке, размещенной в боксе гамма-установки К-200. На установке изучали влияние на кинетику полимеризации и свойства ПАН-полимера следующих параметров радиационной эмульсионной полимеризации акрилонитрила: – мощность поглощенной дозы; – температура; – тип (анионный или катионный) и концентрация эмульгатора; – концентрация мономера в исходной эмульсии; – состав мономерной фазы. Для оценки свойств ПАН-латекса и ПАН-полимера использовали аналитические методики измерения среднего размера латексных частиц, содержания полимера в латексе (сухой остаток), содержания остаточного акрилонитрила в латексе, удельной и характеристической вязкости, молекулярной массы ПАН, качественной оценки молекулярно-массового распределения методом турбидиметрического титрования и др. Кинетические исследования показали, что радиационная эмульсионная полимеризация протекает с высокой скоростью и при поглощенной дозе ~1 кГр степень конверсии составляет более 90%. Мощность поглощенной дозы (I) оказывает существенное влияние на скорость процесса – – w ~ I0.8-1.0 Была определена оптимальная мощность дозы, которая составляет 0.05-0.10 Гр/с. Установлено, что увеличение температуры от 20-25°С до 60-65°С при прочих одинаковых условиях приводит к незначительному уменьшению молекулярной массы (на ~ 10%). При этом температура существенным образом сказывается на виде полимеризата: при увеличении температуры полимеризат представляет собой не латекс, а дисперсию. Для проведения радиационной эмульсионной полимеризации акрилонитрила могут быть использованы эмульгаторы как анионного, так и катионного типа. Особенности радиационной эмульсионной полимеризации акрилонитрила обусловлены высокой растворимостью его в воде и нерастворимостью мономера в его собственном полимере. В отличие от мономеров, эмульсионная полимеризация которых укладывается в рамки теории «идеальной» эмульсионной полимеризации, радиационная эмульсионная полимеризация акрилонитрила протекает эффективно и при концентрациях эмульгатора ниже критической концентрации мицеллообразования. Изучение влияния концентрации эмульгатора на скорость полимеризации и молекулярную массу ПАН-полимеров показало, что в присутствии даже незначительных количеств эмульгатора (ниже критической концентрации мицеллообразования) скорость радиационной эмульсионной полимеризации в 2.5-3 раза выше, чем без эмульгаторов. При дальнейшем увеличении концентрации эмульгатора (с) скорость полимеризации (w) увеличивается несущественно: w ~ с0.15 для анионного эмульгатора и w ~ с0.12 для катионного эмульгатора. Установлено, что с уменьшением концентрации эмульгатора увеличивается диаметр латексных частиц, а число их в единице объема уменьшается. При изменении концентрации эмульгатора в исследуемом диапазоне молекулярная масса практически не меняется. Известно, что на процесс формирования и прочность углеродных волокон могут оказывать примеси в исходном ПАН-волокне. Поскольку при радиационной эмульсионной полимеризации акрилонитрила в качестве дополнительных веществ используются только эмульгаторы, образцы ПАН-полимеров были проанализированы на содержание термически неразлагаемого остатка (золы), количество которого не должно превышать 0.01%. Результаты исследований показали, что при содержании эмульгатора в эмульсии 0.05% и менее содержание золы в ПАН-полимерах удовлетворяет требованиям. Изучено влияние концентрации основного мономера (акрилонитрила) в исходной эмульсии на молекулярную массу ПАН-полимеров. Показано, что основным параметром процесса, определяющим величину молекулярной массы ПАН-полимера, являются содержание акрилонитрила в исходной эмульсии: при увеличении концентрации акрилонитрила с 8 до 16% (в два раза) молекулярная масса увеличивается с 400 000 до 850 000. Для модифицирования свойств полиакрилонитрила проводили его сополимеризацию с небольшими количествами таких мономеров, как итаконовая кислота и метилакрилат. Проведенные исследования показали, что процесс радиационной эмульсионной сополимеризации существенно не отличается от процесса гомополимеризации акрилонитрила. Показано, что радиационная эмульсионная сополимеризация протекает до высоких степеней конверсии при относительно малых величинах поглощенной дозы; состав сополимера практически не отличается от состава мономерной фазы. С помощью радиационной эмульсионной сополимеризации может быть достигнута требуемая величина молекулярной массы ПАН-сополимеров. В работе были изучены способы выделения ПАН-сополимера из латекса методами коагуляции и распылительной сушки. Разработаны рецептуры и режимы коагуляции анионных и катионных ПАН латексов. Таким образом, в процессе работы изучено влияние параметров радиационной эмульсионной полимеризации акрилонитрила и сополимеризации с итаконовой кислотой и метилакрилатом на молекулярную массу ПАН-полимеров, разработаны экспериментальные и аналитические методики изучения радиационной эмульсионной полимеризации акрилонитрила и характеристик ПАН-полимеров. Показано, что способ радиационной эмульсионной полимеризации является гибким способом получения ПАН полимеров и сополимеров. Установлены закономерности получения ассортимента гомополимеров, двойных и тройных сополимеров ПАН различной молекулярной массы. По материалам выступления на Круглом столе «Перспективы производства углеродного волокна в России: современные технологии, поиск оптимальных решений», 15 октября 2008, Международный информационно-выставочный центр «ИнфоПространство» Автор: В.Р .Дуфлот, ФГУП «НИФХИ им. Л.Я. Карпова»
www.Polymery.ru
|