Химическая стойкость Перечень агрессивных агентов, влияющих на свойства полимерных материалов, чрезвычайно широк, но тем не менее может быть систематизирован в наиболее часто встречающиеся группы. Это минеральные и органические кислоты, а также растворы последних в воде, растворы щелочей и окислителей, алифатические и ароматические растворители, горюче-смазочные материалы. Воздействие агрессивной среды на полимер может сопровождаться его набуханием, диффузией среды в полимер и химическим взаимодействием, приводящим к деструкции пластика. На определение стойкости полимерного материала к агрессивным средам существуют государственные стандарты, характеризующие сопротивляемость в баллах. Чем значимее балл — тем выше сопротивляемость материала воздействию агрессивной среды. По ГОСТу 12020 стойкость к агрессивным средам оценивается по изменению их массы, причем по пятибалльной шкале: 5 — высокая стойкость; 4 — удовлетворительная; 3 — материал устойчив не во всех случаях; 2 — стойкость недостаточна, к применению не рекомендуется; 1 — материал не стоек и быстро разрушается. Высокой химической инертностью и стойкостью к деструкции обладают фторопласты. Марки фторопластов Ф-4, Ф-4 НТД, Ф-3, Ф-40 стойки ко всем средам. Значительную химстойкость демонстрируют и такие полиолефины, как ПЭНП, ПЭВП и ПП, а также непластифицированный ПВХ. Несколько уступает им по этому качеству ПК и полистирольные пластики (ПС). Гетероцепные полимеры типа полиамидов склонны к гидролитической деструкции и активному набуханию вследствие своей гидрофильности. Нестоек к агрессивным средам конструкционный термопласт — полиформальдегид. Термореактивные пластики чувствительны к щелочным средам и растворам окислителей. Вместе с тем в химическом аппаратостроении широко используются высоконаполненные порошковым графитом (асбестом) антегмиты и фаолиты, полученные на основе фенолоформальдегидного или фенолоальдегидного связующего. Армированные полимерные материалы могут эксплуатироваться длительное время в кислотах и растворах щелочей концентрацией до 10%, а также в растворителях и горючесмазочных материалах. Электрические свойства Под электрическими свойствами понимают совокупность параметров, характеризующих поведение пластмассы в электромагнитном поле. В прикладном значении наиболее часто используются следующие параметры: диэлектрическая проницаемость, диэлектрические потери, тангенс угла диэлектрических потерь, электрическая проводимость и электрическая прочность, а также трекингостойкость. Диэлектрическая проницаемость e является параметром, равным отношению емкости электрического конденсатора, между обкладками которого — полимерный материал, к емкости того же конденсатора, между обкладками которого вакуум или воздух. По величине e все полимерные материалы условно подразделяются на группы: • неполярные 1,8 < е < 2,3 • малополярные 2,3 < е < 3,0 • полярные 3,0 < е < 4,0 • сильнополярные e > 4,0 Условность разделения заключается в том, что электрические свойства пластмасс сильно зависят от внешних условий — температуры, влажности, степени ионизации окружающей среды, напряженности электрического поля, силы тока и других. При стандартизованных измерениях частота электромагнитного поля —10 Гц, температура — 20 0С, относительная влажность воздуха — 60%.
|