Улучшение совместимости пластмасс и эластомеров: прорыв со стороны модифицирующих добавок, увеличивающих ударную прочность Независимо от пластикации можно улучшить ударопрочность полимеров при комнатной температуре и снизить охрупчивание при температурах ниже нуля за счет использования модифицирующих добавок, увеличивающих ударопрочность. Основным принципом является тонкое диспергирование и распределение маленьких частиц эластомера в смоле пластмассы. Если эластомер совместим с полимером, свойства которого необходимо улучшить, и осуществляется их сильная адгезия, он распространяется и амортизирует энергию удара. В то же время жесткость смолы пластмассы уменьшается, и некоторые другие свойства могут более или менее изменяться, например, твердость, температура допустимой деформации (см. Таблицу 3), а также, в конечном итоге, устойчивость к воздействию атмосферных явлений и теплостойкость. Смола пластмассы остается в рабочем состоянии при более низких температурах, тем более, что температура перехода в стеклообразное состояние каучука очень низкая. Используется множество полимеров, например, ABS (уже содержащий полибутадиен), MBS, CPE, SBS, SEBS, полиакрилат, полибутадиен, EPDM, этилен-акрилат, модифицированные полиолефины... В Таблице 3 представлены примеры воздействия добавок, модифицирующих ударопрочность, на отношения эксплуатационных характеристик конструкционных термопластов. | Эксплуатационные характеристики термопласта с повышенной ударопрочностью, деленые на те же эксплуатационные характеристики для марок с неизмененной ударопрочностью | Ударопрочность | 2 - 5 | Твердость по Роквеллу M | 0.7 - 0.8 | Прочность на разрыв | 0.6 - 0.8 | Относительное удлинение при разрыве | 1 - 3 | Модуль упругости при растяжении | 0.4 - 0.6 | Температура допустимой деформации B | 0.9 | Отношения < 1 являются показателями ухудшения рабочих характеристик |
Таблица 3: Примеры воздействия добавок, модифицирующих ударопрочность, на отношения эксплуатационных характеристик термопластов Наряду с высокой ударопрочностью, хотелось бы отметить повышения мягкости термопластов и уменьшение прочности на разрыв. Улучшение совместимости с помощью органомодифицированных наноглин В работе Q. SU and ALL (Polymer International, 56, 2007, p.50) исследуется улучшение совместимости полипропилена и полиамида за счет добавления некоторого процентного содержания органомодифицированного монтмориллонита. Предварительно изготовленную смесь всех ингредиентов вводят во внутренний смеситель, и морфология, исследованная TEM и SEM, показывает наличие существенного различия в размерах диспергированной фазы. Наличие органоглины ускоряет плавление полиамида, и уменьшает размеры диспергированного полиамида. Кроме того, здесь выше динамический модуль упругости. О таком же воздействии сообщается и для смесей полипропилена и полистирола. Природное и пополняемое вещество, улучшающее совместимость В работе W. ARAYAPRANEE and ALL (Journal of Applied Polymer Science, 106,4, 2007, p. 2696) исследуется улучшение совместимости натурального каучука и EPDM путем добавления от 2 до 10 частей масла из скорлупы кешью (CNSO). На первом этапе натуральный каучук пластицируется, затем EPDM смешивается с натуральным каучуком до добавления масла из скорлупы кешью. Лучшая морфология смеси обеспечивает лучшие механические свойства, несмотря на пластифицирующее воздействие масла из скорлупы кешью. Таблица 4 показывает существенное повышение прочности на разрыв и относительного удлинения при разрыве, одновременно. | Без улучшения совместимости | С маслом из скорлупы кешью | Основные свойства | | | Прочность на разрыв, MПa | 2 | 6 | Относительное удлинение при разрыве, % | 500 | 800 | 100% модуль упругости при изгибе, MПa | 0.7 | 0.8 | После старения | | | Прочность на разрыв, MПa | 1.5 | 5 | Относительное удлинение при разрыве, % | 250 | 500 | 100% модуль упругости при изгибе, MПa | 0.9 | 0.8 |
Таблица 4: Примеры свойств смесей 50/50 натурального каучука и EPDM, с улучшением совместимости и без него |