Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ рынка сывороточного протеина в России
  • Исследование рынка кормовых отходов кукурузы в России
  • Исследование рынка крахмала из восковидной кукурузы в России
  • Исследование рынка восковидной кукурузы в России
  • Анализ рынка сорбиновой кислоты в России
  • Исследование рынка силиконовых герметиков в России
  • Исследование рынка синтетических каучуков в России
  • Анализ рынка силиконовых ЛКМ в России
  • Исследование рынка рынка силиконовых эмульсий в России
  • Анализ рынка цитрата кальция в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    ТЕМАТИЧЕСКИЕ НОМЕРА

    ПОЛИУРЕТАНЫ

    Класс высоких свойств
    ->

    Уважаемые читатели, приветствуем Вас тематическом разделе, посвященном ПОЛИУРЕТАНАМ! Благодаря своим особенным эксплуатационным свойствам, полиуретаны широко используется в качестве замены резин, металлов, пластиков во многих отраслях промышленности. Велико значение и ПЕНОПОЛИУРЕТАНОВ, обеспечивающих технологичную тепло и звукоизоляцию, высоко востребованных в таких сферах, как мебельная промышленность, машиностроение, «искожи» и автопром. Рынок полиуретанов велик и многообразен. При этом он один из самых динамично-развивающихся. Появляются новые технологии, продукты, сферы их применения… Здесь вы узнаете об инновациях в области полиуретанов и тенденциях этого рынка.

    Список сообщений |

    05.12.2007

    СИНТЕЗ ПОЛИУРЕТАНОВ: вторичные полиолы


    Производство полиуретанов (ПУ) представляет собой одну из наиболее динамично развивающихся отраслей промышленности. Такой интерес производителей ПУ прежде всего связан с возможностью получения разнообразных технически ценных материалов на их основе. Это монолитные эластомеры и пластики, вспененные материалы, волокна, клея, лаки, адгезивы и герметики. При этом на эластичные и жесткие пенополиуретаны (ППУ) приходится наибольший объем потребления, который составляет 75 % от всего выпуска [1].
    Высокие темпы производства и потребления ПУ приводят к накоплению неизбежно образующихся производственных отходов и изделий вышедших из эксплуатации, что влечет за собой экологические и экономические проблемы. Традиционные способы утилизации отходов - депонирование и сжигание для полиуретанов неприемлемы. В первом случае в результате воздействия воды образуются вредные аминосодержащие продукты, во втором - выделяются токсичные газы, такие как цианистый водород, оксиды азота и т. п. В то же время невосполнимость природных ресурсов и их высокая стоимость диктуют настоятельную необходимость использования вторичного сырья.
    Среди известных методов переработки ПУ отходов наиболее эффективным признан гликолиз, позволяющий получать вторичные полиолы.
    Целью настоящего исследования явилось изучение химической структуры, физико-химических параметров продуктов гликолиза и синтез на их основе новых ПУ материалов.

    Объектами гликолиза служили предварительно измельченные образцы:
    - литьевого монолитного ПУ торговой марки СКУ-ОМ [2], получаемого взаимодействием полиэтиленбутиленгликольадипината (ПЭБА) ММ  2000 и 2,4 толуилендиизоцианата (ТДИ) или его смеси с изомерами в присутствии каталитических количеств 2,4,6-трис(диметиламинометил) фенола (ОМ) при соотношении NCO/OH = 1,15;
    - эластичного ППУ (ЭППУ) холодного формования, получаемого взаимодействием гидроксилсодержащего компонента марки «Эластофом А» на основе простого полиэфира окиси этилена и окиси пропилена Лапрола 5003 [3] и ТДИ при массовом соотношении 1.8:1;
    - жесткого ППУ (ЖППУ), получаемого взаимодействием гидроксилсодержащего компонента на основе простого полиэфира окиси пропилена Лапрола 564 и полиизоцианата при массовом соотношении 1:1,1.

    В качестве деструктирующих агентов (ДА) использовались гидроксилсодержащие соединения, входящие в основной состав производственной композиции. В случае СКУ-ОМ таковыми являлись смесь ПЭБА и ОМ. Для разрушения ЭППУ использовали смесь N,N,N’,N’- тетрагидроксипропиленэтилендиамина (торговая марка Лапрамол 294) и Лапрола 5003. Для ЖППУ использовали Лапрол 564. Массовые соотношения СКУ-ОМ:ДА=60:40, ЭППУ:ДА=40:60 и ЖППУ:ДА=40:60 были выбраны экспериментально, исходя из максимального количества отходов и минимума ДА.
    Гликолиз проводили в колбе с перемешивающим устройством при температурах 120, 150 и 180 оС. В колбу загружали ДА, доводили температуру до заданного уровня и непрерывно вводили измельченный ПУ.
    Химическая структура продуктов гликолиза исследовалась методом ИК-спектроскопии. ИК-спектры регистрировались в области 4000-400 см-1 на спектрометре Specord 75 IR. Использовались образцы в виде капли зажатой между стеклами КBr.
    Содержание гидроксильных и аминных групп определялось химическими методами [4-6].
    Физико-механические показатели исходных и вторичных ПУ определялись согласно стандартам ИСО.
    ИК-спектроскопический анализ продукта гликолиза СКУ-ОМ показал наличие полос поглощения, характерных для уретановой ((3340, 1735, 1535, 780см -1 ), сложноэфирой (1735 см -1 ) и гидроксильной (3460 см -1) групп. Наличие указанных групп позволило предположить, что продукт гликолиза представляет собой смесь бифункциональных по ОН - группам полиолов и уретанполиолов, образующихся в результате каталитического гликолиза аллофанатных, сложноэфирных и уретановых фрагментов (рис., реакции 1,3,4).
    Поскольку в ДА входит ОМ в реакционных количествах, то наряду с гликолизом, не исключена возможность протекания фенолиза указанных групп, которая приводит к образованию моно- и даже нефункциональных по ОН - группам соединений.
    Важнейшим технологическим параметром, позволяющим контролировать процесс гликолиза, является содержание в системе гидроксильных групп (СОН). Установлено, что СОН в гликолизате после незначительного снижения, связанного с углублением деструктивных процессов, через 16 часов при 120 оС стабилизируется на уровне  1,71,8 %. Указанное значение фактически соответствует содержанию ОН-групп в исходном полиэфире.
    Ввиду того, что полученный гликолизат имеет близкое строение и параметры с ПЭБА применяемого для синтеза литьевых монолитных ПУ, появилась возможность его использования в качестве части полиольной составляющей при получение каучука СКУ-ОМ. Динамика изменения физико-механических показателей СКУ-ОМ, полученных с применением вторичного полиола показывает достаточно высокий уровень прочностных показателях вплоть до 20% содержания ПУ отходов (табл. 1).

             O      O                                                 O                      O         

           çê      çê                                 çê                     çê

    ~NH-C-N-C-O~ + HO-R ® ~NH-C-O-R + ~HN-C O~       (1)     

                                                                  

                 O     O                                              O                          O         

            çê     çê                                  çê                     çê

    ~NH-C-N-C-NH~+ HO-R® ~NH-C-O-R +~HN-C-NH~    (2)              

              ½  

         O                                 O   

       çê                                 çê

    ~C-O~ + HO-R ® ~ C-O-R + HO~         (3)          

                  O                                        O          

            çê                                 çê

    ~NH-C-O~+ HO-R®~NH-C-O-R+HO~    (4)          

             O                                    O         

            çê                                    çê

    ~HN-C-NH~ + HO-R ®~NH-C-O-R + H2N~     (5) 

    где: HO-R - ДА

     Рис. Схема реакций гликолиза аллофанатных (1), биуретовых (2), сложноэфирных (3), уретановых (4) и мочевинных (5) групп в ПУ.


    Таблица 1
    Физико-механические показатели СКУ-ОМ на основе
    вторичного полиола с различным содержанием отходов

    Показатели

    Количество отходов
     0510152030

    Условное напряжение при удлинении:100 %, МПА300%, МПА  1,52,7  1,62,9  1,42,4  1,21,9  1,21,9  1,12,2

    Условная прочность при растяжении. МПа 20,7 25,3 25,0 22,0 16,0 8,5

    Относительное удлинение, %640550630600500400

    Эластичность по отскоку,%596052484845

    Твердость по ТМ-2, усл. ед.525452505048

     


    Следующим объектом химической деструкции служили ЭППУ и ЖППУ. Разрушение указанных ПУ возможно за счет гликолиза аллофанатных, биуретовых, уретановых и мочевинных групп. В результате образуются соединения с концевыми гидроксильными и аминными группами (рис., реакции 1,2,4,5). Изучение зависимости содержания в продуктах гликолиза ОН- и NН2-групп от времени (Тдест. ) и температуры (Тдест. ) разрушения показало, что в «мягких условиях» (120 оС) идет образование только гидроксильных групп, концентрация которых закономерно снижается с течением времени и в дальнейшем выходит на плато. Для систем (ЭППУ+Лапрол 5003+Лапрамол 294)  это значение составляет ~8,5 % мас., а для (ЖППУ+Лапрол 564) - ~9,8 % мас. Данные значения близки к количеству ОН-групп изначально поставляемых смесью Лапрола 5003 и Лапрамола 294 (9,4 % мас) и Лапрола 564 - (10,2 % мас.). Наблюдаемая тенденция может иметь место только в случае гликолиза аллофанатных, биуретовых и уретановых групп (рис., реакции 1,2,4), приводящих к образованию гидроксилсодержащих соединений. Повышение температуры приводит к изменению зависимости СОН=f (Тдест. ). В первые часы деструкции наблюдается незначительное плато, которое переходит в довольно резкое падение значений СОН. Период достижения постоянных значений СОН уменьшается с увеличением Тдест. Уровень же плато независимо от Тдест. . остается постоянным и его значения соответствуют СОН продуктов гликолиза при 120 оС. Дальнейшее увеличение дест приводит к одновременному убыванию концентрации ОН-групп и росту содержания в гликолизате NH2-групп за счет распада мочевинных связей ППУ (реакция 5). При этом суммарная концентрация ОН- и NН2-групп в системе, в силу обменного характера процессов гликолиза и аминолиза , остается постоянной.
    Рекомендуется использовать в качестве вторичных полиолов продукты гликолиза ППУ в период выхода значений СОН на уровень постоянных значений.
    ИК-спектры вторичных полиолов на основе ЭППУ и ЖППУ свидетельствуют о наличии полос поглощения соответствующих гидроксильной (3400-3500 см-1), уретановой (1725-1730, 1515-1535 и 770 см-1), мочевинной (1610-1620 см-1), простой эфирной (1090-1110 см-1) и изоциануратной (1420 см-1), в случае полиола на основе  ЖППУ, групп. Присутствие в спектрах этих полос позволяет охарактеризовать вторичные полиол на основе системы (ЭППУ+Лапрол 5003+Лапрамол 294) как смесь Лапрола 5003, Лапрамола 294 и простых полиолов, содержащих в своей структуре уретановые и мочевинные связи, вторичный полиол на основе системы (ЖППУ+Лапрол 564) как смесь Лапрола 564 и полиолов с уретановыми, мочевинными и изоциануратными группами.
    Полученные вторичные полиолы были апробированы в качестве гидроксилсодержащих компонентов в синтезе клеевых и герметизирующих композиций [7,8]. В частности, прочности клеевых соединений на отрыв и сдвиг образцов сталь 3-сталь 3, выполненные композицией на основе вторичного полиола (ЭППУ+Лапрол 5003+Лапрамол 294) с содержанием 40 мас.ч. отходов ЭППУ, соответственно составляют 21 МПа и 12 МПа. Этот клей может успешно конкурировать с существующими уретановыми клеями конструкционного назначения.

    Литература
    1. Stinson S. Poleurethane use continues to grow // Chem. and Eng. News. 1997. 75. №31. P.22.
    2. Пат. 914574 РФ. Способ получения полиуретанов с изоциануратными циклами в цепи. Бакирова И.Н., Зенитова Л.А., Кирпичников П.А. и др./1993.
    3. Пат. 2117014 РФ. Катализатор для гидроксилсодержащего компонента и состав гидроксилсодержащего компонента для получения эластичного пенополиуретана на его основе. Матросова Л.В., Бакирова И.Н., Зенитова Л.А. и др./ Б.И.. 1998. № 22.
    4. Анализ продуктов производства синтетических каучуков / Под ред. И.В.Гарманова. - М.-Л.: Химия. 1964. С.222.
    5. Губен-Вейль. Методы органической химии. Т. II. Методы анализа. -М.: Государст. научно-техн. изд. хим. литер. 1963. С. 674.
    6. Сиша С., Ханна Дж. Г. Количественный органический анализ по функциональным группам. -М.: Химия. 1983. С. 40.
    7. Пат. 2139313 РФ. Полиуретановая клеевая композиция. Бакирова И.Н., Демченко И.Г., Матросова Л.В., Розенталь Н.А./ Б.И. 1999. № 28.
    8. Пат.2139305 РФ. Полимерная композиция. Бакирова И.Н., Табачков А.А., Демченко И.Г., Шавкин И.В./ Б.И. 1999 № 28.

     


    А.Р. Галимзянова, И.Г. Демченко, Д.А. Романов, И.Н. Бакирова, Л.А. Зенитова,
    Казанский государственный технологический университет, г. Казань

     


    www.kzck.ru

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    ТЕМАТИЧЕСКИЕ НОМЕРА

    Полимеры для автопрома

    Индустрия «автопластиков»

    Пластики в медицине

    Полимеры на службе здоровья

    Полимерные трубы

    Борьба за коммуникации

    Полиуретаны

    Класс высоких свойств

    Полимеры в электронике

    «Электропластики» и прогресс

    Индустрия полиэфиров

    Царство полиэфиров

    Стеклопластики

    Легкие и прочные

    Экструзия профилей

    «Профильные» технологии

    Пресс-формы

    Оснастка: технологии и сервис

    Нетканые материалы

    Мир нетканых материалов

    Термопластавтоматы

    Оборудование для литья под давлением

    Полиолефины

    Базовый пласт

    Экструзия пленок

    Слои прогресса

    Конструкционные пластики

    Детали конструктора

    НАНОТЕХНОЛОГИИ

    Под знаком НАНО

    КабельПРОМ

    Применение и переработка полимеров

    Эластичные технологии

    Каучуки и резины

    Древесно-полимерные композиты

    «Жидкое дерево»

    Индустрия «ИСКОЖ»

    Искусственные кожи, клеенки

    Адгезивы

    Революция в технологиях сборки

    Все номера
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved