Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Производство и потребление каменной бумаги в России
  • Анализ и прогноз рынка полифениленсульфида в России
  • Производство и потребление силикагелей для пищевой промышленности
  • Производство и потребление коллагенового белка в России
  • Производство и потребление масла грецкого ореха в России
  • Производство и потребление тыквенного масла в России
  • Производство и потребление абрикосового масла в России
  • Производство и потребление чесночного масла в Росси
  • Производство и потребление кедрового масла в России
  • Производство и потребление виноградного масла в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    Мнения и оценки

    Результаты испытания стеклопластиковых труб


    Работа посвящена исследованию прочностных и жесткостных свойств стеклопластиковых труб на основе эпоксидных термостойких связующих. Проведен эксперимент по методике трехточечного изгиба для определения прочностных и жесткостных свойств  образцов вырезанных из данных труб. По экспериментальным данным произведен расчет упругих и прочностных характеристик стеклопластиковых труб.


     

                  Высокие удельные показатели прочности и жесткости волокнистых композиционных материалов наряду с химической стойкостью, сравнительно малым весом и другими свой-ствами, сделали эти материалы привлекательными для изготовления трубопроводов раз-личного назначения. Применение стеклопластиковых труб взамен металлических  увели-чивает  срок службы трубопроводов в 5-8 раз, исключает применение антикоррозионных защитных средств, в 4-8 раз снижает  массу трубопровода , исключает применение сва-рочных работ. При этом остается открытым вопрос применения стеклопластиковых труб работающих при повышенных температурах (до 1200С). 
                  Данная работа ведется в рамках проекта РФФИ-Урал-2004 « Модели механики дефор-мирования и разрушения структурно- неоднородных материалов в задачах проектирова-ния элементов конструкций и технологий производства изделий из композитов, -01-04-96052», проекта ОФИ РФФИ-Урал-2004. « Проектирование элементов конструкций ком-позитных трубопроводов и технологий производства изделий из волокнистых пластиков, 04-01-97507», инновационного проекта департамента промышленности и науки Пермской области «Стеклопластиковые трубы с повышенной термостойкостью (рабочая температу-ра  эксплуатации до 1200С).
                  Целью работы является определение прочностных и жесткостных свойств стеклопла-стиковых труб применяемых для транспортировки сред с повышенными температурами, что необходимо для грамотного проектирования и эксплуатации трубопроводов из стек-лопластика в условиях высоких температур. 
                  Объектом исследований являются трубы из композиционных материалов, выпускае-мые ООО «Пласт». Материал несущего слоя труб стеклопластик, формуемый по методу «мокрой намотки» спирально-перекрестных слоев ровинга из стеклянных волокон и по-лимерной матрицы. Внутреннее герметизирующее покрытие труб состоит из специальных слоев, с большим содержанием полимерной матрицы. В качестве полимерной матрицы были использованы термостойкие связующие.
                  Для обеспечения исследований изготовлен стенд для проведения долговременных испытаний на термостойкость с возможностью установки восьми труб и деталей. Стенд подключен к трубопроводу перегретого пара со средней температурой транспортируемой среды 120С. Температура, давление и расход пара в стенде непрерывно отслеживаются в течение всего времени проведения испытаний автоматической системой контроля.
                  Так же экспериментальные трубы на основе термостойких связующих используются в ОАО «Уралкалий» для  «БКПРУ4» (Березниковское калийное рудоуправление №4) в технологических трубопроводах, транспортирующих смесь щелоков и глины нераствори-мой руды при температуре 100-105оС. 
                  Для проведения эксперимента были взяты два образца труб: образец- свидетель, обра-зец прошедший термостарение в течение 1000ч. В данной работе проведено исследование прочностных и жесткостных свойств стеклопластиковой трубы изготовленной на основе композиции «А» (связующее «Макромер» №21) и на основе композиции «В» (связующее Этал-450).
                  Научно-исследовательский процесс планировался в виде следующей последовательно-сти этапов:
    - изготовление опытных труб на основе отобранных термостойких полимерных матриц совместно с образцами-свидетелями;
    - исследование физико-механических и теплофизических свойств образцов-свидетелей;
    - испытание изготовленных опытных термостойких стеклопластиковых труб в стенде в течение 1000 часов;
    - исследование физико-механических и теплофизических свойств опытных труб, прошедших испытания в стенде в течение 1000 часов;
    - анализ динамики физико-механических свойств стеклопластиковых труб в зави-симости от продолжительности, температуры испытаний и других факторов. Оценка влияния теплового воздействия проводится посредством сравнения свойств эксплуатировавшихся в стенде опытных труб и соответствующих образ-цов-свидетелей;
    - оценка долговечности стеклопластиковых труб на основе рассматриваемой кон-струкции и полимерной матрицы. Прогнозирование срока эксплуатации и выдача рекомендаций к конструкции рассматриваемых изделий.
                  При этом основными показателями изменения свойств выбраны изменения физико-механических опытных стеклопластиковых труб, подвергавшихся долговременной экс-плуатации, в сравнении с образцом-свидетелем:


    Испытания на изгиб двуслойных образцов.


                  Для определения физико-механических характеристик стеклопластиковых образ-цов проведены механические испытания по методике трехточечного изгиба (ГОСТ 25.601-80) образцов – свидетелей всех [2] опытных труб и труб, прошедших старение в паропро-воде при температуре 110-120С. 
                  Целью испытаний являлось определение модуля Юнга , модуля сдвига, предела прочности на одноосное растяжение и сжатие и предела прочности на сдвиг в нормальных условиях и при повышенной температуре армированного стеклопластика несущего слоя трубы в осевом и радиальном направлениях.
                  Для проведения испытаний были вырезаны плоские двухслойные образцы с разме-рами 115х20 мм , 95х20 мм , 75х20 мм и 60х20 мм из стеклопластиковых труб соответст-венно в осевом и в радиальном направлении.
                 Перед испытанием проводились замеры индивидуальных размеров каждого образца. С помощью штангенциркуля измерялись ширина и толщина образцов.
                  Условия испытаний – базы испытаний 50,65,85 и 105 мм , скорость нагружения 0,3мм/сек , температура  250С и 1200С.   Перед проведением испытаний образцы прогрева-лись в термопечи в течение двух часов. Всего было испытано 320 образцов.
               Эксперименты проводились на испытательном комплексе: разрывная машина 2055 Р-0.5 , с графопостроителем. На полученных графиках произвольно выбирались двадцать точек соответственно по оси абцисс откладывалось перемещение , а по оси ординат сила.
                Результаты испытаний представляют собой файлы данных, отражающих соответствие нагрузка на образец – перемещение активного захвата в каждый момент времени, позво-ляющие строить диаграммы деформирования, а также измеренные геометрические вели-чины. Обработка результатов эксперимента проводится по методике определения упругих и прочностных характеристик при трехточечном изгибе, которая приведена ниже.


    Методика определения упругих и прочностных характеристик при трехточечном изгибе
               Для определения упругих и прочностных характеристик [1] , [2] при изгибе чаще все-го используются призматические, реже – цилиндрические образцы. При испытаниях изотропных материалов на изгиб определяется модуль упругости Еи  и предел прочности при изгибе σи При этом используются зависимости между экспериментально замеряемыми нагрузками Р и соответствующими им прогибами w балок. При трехточечном изгибе стержня модуль упругости Еи  и предел прочности при изгибе определяются по формулам:
                                                     

                         Еи= Р·l3оп /(48·I·wmax)                                                     (1)

                                                       dи= 3/2 Pmax· l оп /(b0·h2)                                                    (2)

    где     wмах – прогиб в середине пролета балки;l оп – расстояние между опорами.

               Формула (1) пригодна для оценки прочности при изгибе, если разрушение происходит в упругой области. Кроме нормальных напряжений напряжений в изгибаемой балке дей-ствуют касательные напряжения ,влияние которых на прочность и жесткость изотропных композиционных материалов пренебрежимо мало.
             Формулы  (1) и (2) не учитывают возможность межслойных сдвигов , поскольку изо-тропный композиционный материал равнопрочен во всех направлениях.
               Армированный композиционный представляет собой составную конструкцию , сла-быми местами которой являются низкая сдвиговая прочность и жесткость в некоторых направлениях. Применение к ним обычных формул теории изгиба , не учитывающих структурных особенностей  , может привести к грубым ошибкам.
              Разрушение при изгибе изотропных композиционных материалов обычно происходит под действием нормальных напряжений. Армированные анизотропные композиционные в зависимости от размеров образца могут при трехточечном изгибе разрушаться как от нор-мальных , так и от касательных нагрузок в последнем случае формула (2) для вычичления прочности не приемлема , так как при таких испытаниях определяется не прочность при изгибе , а предел прочности BXZ при межслойном сдвиге, и рабочая формула для ее рас-чета имеет вид
                                                      

                                                       tBXZ = 3/4 Pmax /(b0·h)                                                   (3)

               Таким образом, при испытаниях на изгиб в зависимости от характера разрушения образца можно определить прочность при изгибе или при межслойном сдвиге. На практике в образце всегда действуют и нормальные, и касательные напряжения, поэтому при оп-ределении свойств анизотропных композиционных материалов на изгиб нужно учитывать их взаимное влияние.
              Наиболее распространен трехточечный изгиб, когда свободно опирающийся на две опоры образец нагружается в середине пролета сосредоточенной силой Р. Для расчета мо-дуля упругости  при испытаниях  слоистых композитов на трехточечный изгиб следует пользоваться уточненными зависимостями, учитывающими влияние сдвиговых деформаций и связывающими максимальный прогиб балки посредине пролета wмах с приложенной силой.
    Р ,истинным модулем упругости при изгибе  Еиист  и модулем межслойного сдвига Gxy :

                                    wмах = - ( Р·l30 /( 48· Еиист · I) [ 1 + aк (h/l0)2 · Еиист / Gxy] ,                              (4)


    где aк-коэффициент , зависящий от формы поперечного сечения балки
    для прямоугольного сечения Еиист =1,2
    Истинный модуль упругости при изгибе Еиист связан с фиктивным модулем Еи , который рассчитывается по формуле (1) , соотношением


                                                   1 / Еи  =1 / Еиист + ( 1.2 Gxy ) (h/l0)2                                                            (5)


               Чем больше отношение толщины образца к его длине (h/l0 и чем больше степень анизотропии композита, характеризуемая отношением Еиист/ Gxy  .тем больше отличается значение истинного модуля упругости от фиктивного.
               С помощью единичного эксперимента по формуле (4) нельзя вычислить модули уп-ругости , поскольку она содержит две неизвестные величины Еиист и Gxy  . Чтобы получить значения этих величин испытываются несколько образцов с раз ным отношением
    (h/l0) , строится график h/l0 и строится график, по оси абцисс которого откладывается величина (h/l0)2  , а по оси ординат – (1/ Еи). В этих координатах зависимость (5) должна изображаться прямой линией, пересекающей ось ординат , соответствующей (1/ Еиист) , а тангенс угла наклона этой прямой к оси абцисс равен 1,2/ Gxy . Далее значения Еиист и Gxy  определяются методом наименьших квадратов.
    Уточненная формула для расчета максимальных нормальных напряжений σ*  при изгибе имеет вид


                                               σ* = σи( 1+ אּа2 / 15 - אּа4 / 525)                                                              (6 )


    а расчета максимальных сдвиговых напряжений


                                                      txy* = tBXZ (1 - אּа2 / 60 + אּа4 / 12600),                                         (7)


    где σи и tBXZ  определяются по формулам (2) и (3) соответственно;

    а =(πh / 2l0) (Еи Gxy)1/2 – параметр анизотропии


               Таким образом проводится обработка результатов испытаний на трехточечный изгиб об-разцов стеклопластиковых труб как в осевом так и в радиальном направлениях.

    Результаты эксперимента на трехточечный изгиб.
                 Данные полученные при обработке результатов эксперимента приведены в таблицах (1) , (2) , (3) , (4). На рисунках (1) – (8) показано изменение модуля Юнга , модуля сдвига , предела прочности при изгибе , предела прочности при сдвиге при комнатной температу-ре и при температуре 1200С до и после термостарения.


    Таблица 1. Модуль Юнга и модуль сдвига при комнатной температуре и при температуре 1200С для образцов стеклопластиковой трубы изготовленной при использовании связую-щего – композиция «А» до и после термостарения .

    Е, ГПа  G, МПа 
     в осевом
    направлении
    в окружном
    направлении
     в осевом
    направлении
    в окружном
    направлении
    "А" t=207,710,71"А" t=20115,9220,1
    "А"(1000) t=206,912,37"А"(1000) t=20110,54168,24
    "А" t=1205,739,48"А" t=12094,9134,4
    "А"(1000) t=1204,478,49"А"(1000) t=12094,77155,46

    Таблица 2. Предел прочности на изгиб и предел прочности на сдвиг при комнатной тем-пературе и при температуре 1200С для образцов стеклопластиковой трубы изготовленной при использовании связующего – композиция «А» до и после термостарения .

    Предел прочности
    на изгиб, МПа
      Предел прочности
    на сдвиг, МПа
     
     в осевом
    направлении
    в окружном
    направлении
     в осевом
    направлении
    в окружном
    направлении
    "А" t=20114221,1"А" t=2010,727,21
    "А"(1000) t=20108,92213,09"А"(1000) t=2012,1220,4
    А" t=12090,98151,7"А" t=1208,317,26
    "А"(1000) t=12082,31149,2"А"(1000) t=1207,1614,32

    Таблица 3. Модуль Юнга и модуль сдвига при комнатной температуре и при температуре 1200С для образцов стеклопластиковой трубы изготовленной при использовании связую-щего – композиция «В» до и после термостарения .

    Е, ГПа G, МПа
    в осевом
    направлении
    в окружном
    направлении
    в осевом
    направлении
    в окружном
    направлении
    "В" t=208,1812,08"В" t=20161,8193,8
    "В"(1000) t=205,79,1"В"(1000) t=20131,7180,3
    "В" t=1201,634,53"В" t=120167,2223,5
    "В"(1000) t=1200,932,3"В"(1000) t=12064,7133,6

    Таблица 4. Предел прочности на изгиб и предел прочности на сдвиг при комнатной тем-пературе и при температуре 1200С для образцов стеклопластиковой трубы изготовленной при использовании связующего – композиция «В» до и после термостарения .

    Предел прочности
    на изгиб, МПа
     Предел прочности
    на сдвиг, МПа
    в осевом
    направлении
    в окружном
    направлении
    в осевом
    направлении
    в окружном
    направлении
    "В" t=20128,7243,2"В" t=2011,1122,07
    "В"(1000) t=2091,9144,9"В"(1000) t=207,4313,13
    "В" t=12078,04117,9"В" t=1206,0812,24
    "В"(1000) t=1204846,5"В"(1000) t=1203,886,55


     
    Рисунок 1. Изменение модуля Юнга при нагревании до 1200С стеклопластиковой трубы изготовленной на основе связующего – композиция «А» до и после термостарения


    Рисунок 2. Изменение модуля сдвига при нагревании до 1200С стеклопластиковой трубы изготовленной на основе связующего – композиция «А» до и после термостарения


     
    Рисунок 3. Изменение предела прочности на сдвиг при нагревании до 1200С стеклопласти-ковой трубы изготовленной на основе связующего – композиция «А» до и после термо-старения.

     

    Рисунок 4. Изменение предела прочности на изгиб при нагревании до 1200С стеклопласти-ковой трубы изготовленной на основе связующего – композиция «А» до и после термо-старения.


    Рисунок 5. Изменение модуля Юнга при нагревании до 1200С стеклопластиковой трубы изготовленной на основе связующего – композиция «В» до и после термостарения.


    Рисунок 6. Изменение модуля сдвига при нагревании до 1200С стеклопластиковой трубы изготовленной на основе связующего – композиция «В» до и после термостарения


     
    Рисунок 7. Изменение предела прочности на изгиб при нагревании до 1200С стеклопласти-ковой трубы изготовленной на основе связующего – композиция «В» до и после термо-старения


     
    Рисунок 8. Изменение предела прочности на сдвиг при нагревании до 1200С стеклопласти-ковой трубы изготовленной на основе связующего – композиция «В» до и после термостарения

    Анализ результатов.
    По полученным результатам можно сделать следующие выводы:
                  При нагревании и термостарении упругие и прочностные  свойства стеклопластико-вых труб изменяются: для трубы на основе композиции «А» падение модуля Юнга при нагревании в осевом направлении составляет 25,5% , после термостарения 35,2% , в ради-альном при нагревании 11,4% , после термостарения 31,3% , модуля сдвига при нагрева-ниии в осевом направлении 18,12% , после термостарения 14,2% , в радиальном направле-нии при нагревании 38,9% , после термостарения 7,6 , предела прочности на изгиб при на-гревании в осевом направлении 20,1% после термостарения 24,4% , в радиальном при на-гревании 31,3% , после термостарения ,29,9% , предела прочности на межслойный сдвиг при нагревании в осевом направлении составляет 22,4% , после термостарения 40,9% , в радиальном при нагревании 36,5% , после термостарения 29,8%.
                  Для трубы на основе композиции «В» падение модуля Юнга при нагревании в осе-вом направлении составляет 80,0% , после термостарения 83,6% , в радиальном при нагре-вании 62,5% , после термостарения 74,7% , модуль сдвига при нагреваниии в осевом на-правлении увеличивается на 3,3% , после термостарения уменьшается на 50,8% , в ради-альном направлении при нагревании увеличивается на 15,3% , после термостарения уменьшается на 25,7% , предел прочности на изгиб уменьшается-при нагревании в осевом направлении на 39,3% после термостарения на 47,7% , в радиальном при нагревании на 51,5% , после термостарения на 67,9% , предел прочности на межслойный сдвиг уменьша-ется - при нагревании в осевом направлении составляет 45,2% , после термостарения 47,7% , в радиальном при нагревании уменьшается на 44,5% , после термостарения на 50,1%.
                  Полученное, в результате эксперимента, изменение физико-механических свойств стеклопластиковых труб изготовленных на основе композиций «А» и «В» позволяет гово-рить о том что они могут быть использованы для эксплуатации при повышенных темпера-турах (до 1200С) в технологических трубопроводах и паропроводах.

    Список литературы.

    1.Васильев В.В. справочник «Композиционные материалы»-М. : Машиностроение, 1990 г.
    2.Шаклеина С.Э. «Статическая и длительная прочность элементов пульпо и реагентопро-водов из композиционных материалов»- Пермь, 2003 г.

     


    Поносов С.Е.     plast@perm.raid.ru
    Пермский государственный технический университет

    Подробнее о текущей ситуации и прогнозе российского рынка труб из сшитого по-лиэтилена смотрите в отчете Академии Конъюнктуры Промышленных Рынков «Рынок стеклопластиковых труб в России».

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    Материалы раздела
  • ПРОИЗВОДСТВО ПРОКАТА С ПОКРЫТИЕМ В РОССИИ
  • ПРОИЗВОДСТВО ОДНОРАЗОВЫХ ШПРИЦЕВ В РОССИИ
  • ПРОИЗВОДСТВО ИНФУЗИОННЫХ РАСТВОРОВ В РОССИИ
  • СПРОС НА ЗУБНЫЕ ИМПЛАНТЫ В РОССИИ
  • ПРОИЗВОДСТВО ПВХ ТРУБ В РОССИИ
  • Производство антифризов в России
  • ПРОИЗВОДСТВО ПОЛИПРОПИЛЕНОВЫХ ТРУБ В РОССИИ
  • РЫНОК КОЛЕСНЫХ ДИСКОВ В 2018 ГОДУ
  • ДИНАМИКА ОБЪЕМОВ ПРОИЗВОДСТВА ПОЛИЭТИЛЕНОВЫХ ТРУБ
  • Производство арматуры в 2018 году
  • В КАКИХ РЕГИОНАХ БУДЕТ СПРОС НА АВТОБАЛЛОНЫ
  • НАЧАТО СТРОИТЕЛЬСТВО II ОЧЕРЕДИ ПРОИЗВОДСТВА ПЭФ НИТЕЙ
  • НОВОЕ ПРОИЗВОДСТВО УГЛЕРОДНЫХ ТКАНЕЙ
  • НОВЫЕ ПРОИЗВОДИТЕЛИ АВТОКОМПОНЕНТОВ в ОЭЗ «ТОЛЬЯТТИ»
  • РЫНОК АВТОКОМПОНЕНТОВ: еще один завод Bosch
  • РУСВИНИЛ О ХОДЕ СТРОИТЕЛЬСТВА
  • РОССИЯ БУДЕТ ОСНОВНЫМ ПОСТАВЩИКОМ ПОЛИМЕРОВ
  • КАК БУДЕТ ОРГАНИЗОВАНА УТИЛИЗАЦИЯ АВТОМОБИЛЕЙ
  • НА РЫНКЕ КРОВЕЛЬНЫХ ПВХ МЕМБРАН
  • НОВОЕ ШТАМПОВОЧНОЕ ПРОИЗВОДСТВО в «АЛАБУГЕ»
  • ECOVACS WINBOT ДЛЯ МОЙКИ ОКОН
  • ИНВЕСТПРОГРАММА АВТВАЗА ДО 2020 ГОДА
  • КОМПОЗИТЫ «МЕТАКЛЭЯ» В ТРУБАХ ГАЗПРОМА
  • ПРОИЗВОДСТВО И ПЕРЕРАБОТКА ПОЛИМЕРОВ В УКРАИНЕ
  • НАЧАТО СТРОИТЕЛЬСТВО ЗАВОДА ОПТОВОЛОКНА
  • НОВОЕ ПРОИЗВОДСТВО РТИ ДЛЯ АВТОПРОМА
  • ДВИГАТЕЛИ CUMMINS НА РОССИЙСКОМ РЫНКЕ
  • НОВОЕ ПРОИЗВОДСТВО ДПКТ
  • ПРОИЗВОДСТВО АВТОСИДЕНИЙ для АВТОВАЗА
  • В АЛЬМЕТЬЕВСКЕ МЕТАЛЛИЧЕСКИЕ ТРУБЫ МЕНЯЮТ НА СТЕКЛОПЛАСТИКОВЫЕ
  • Все статьи
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved