Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ рынка сывороточного протеина в России
  • Исследование рынка кормовых отходов кукурузы в России
  • Исследование рынка крахмала из восковидной кукурузы в России
  • Исследование рынка восковидной кукурузы в России
  • Анализ рынка сорбиновой кислоты в России
  • Исследование рынка силиконовых герметиков в России
  • Исследование рынка синтетических каучуков в России
  • Анализ рынка силиконовых ЛКМ в России
  • Исследование рынка рынка силиконовых эмульсий в России
  • Анализ рынка цитрата кальция в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    ТЕМАТИЧЕСКИЕ НОМЕРА

    ПОЛИМЕРЫ В ЭЛЕКТРОНИКЕ

    «Электропластики» и прогресс
    ->

    Здравствуйте! Развитие индустрии полимеров, появление новых материалов стимулирует прогресс в электронике. Современные полимеры могут применяться не только для изготовления корпусов готовых изделий, но и для производства полупроводников, аккумуляторных батарей. Благодаря «полимерному прогрессу» набирает обороты новое направление – гибкая электроника… В этом разделе вы найдете статьи о развитии технологий полимерных материалов для электроники, о тенденциях этого рынка, познакомитесь с «прорывными» инновациями и новостями ведущих игроков.

    Список сообщений |

    23.09.2011

    БИОПОЛИМЕРЫ ДЛЯ ПЕРЕДАЧИ ДАННЫХ

    В электрических устройствах, созданных человеком, начиная с лампы накаливания и кончая ноутбуком перенос информации осуществляется посредством электронов, или, чтобы быть совсем точным, потока электронов и «дырок» с открытием полупроводников и р-n-перехода.

     

    Передача же сигналов внутри живых систем, тех же нервных импульсов или команд, регулирующих обмен веществ, осуществляется иначе — с помощью ионов (электрически заряженных атомов) и протонов (ядер атомов водорода, лишенных электрона — собственно, простейшей разновидности ионов).

     

    Устройства, способные подключаться к живым сигнальным системам непосредственно и выполнять функции точных биосенсоров, биоконтролеров или бионических протезов, требуют создания и соответствующих адекватных интерфейсов, гарантирующих быстрое время отклика и минимальные потери информации, курсирующей между таким устройством и организмом.

     

    Понятно, что современные биодатчики или нейропротезы с их чужеродными для клеток электрон-кремниевыми интерфейсами вряд ли смогут удовлетворять таким условиям в полной мере.

     

    Поскольку никакой реальной альтернативы кремниевой микроэлектронике, достигшей больших успехов в обработке информации, пока никто не предложил (последний писк моды — «влажные» ДНК-процессоры — пока остается на уровне теории и первых экспериментов), идеальным вариантом стало бы создание прозрачного протон-электронного интерфейса, способного транслировать ионные сигналы в электронные и наоборот, а также биологически совместимого с живыми тканями.



    Схема первого протонного транзистора на биополимере: эммитер (source) и коллектор (drain) из гидрида палладия, мост из хитозана (желтая перемычка), изолятор-подложка (SiO2), база (gate). Справа -- макромолекулярные волокна модифицированного хитозана. Внизу -- молекулярная структура хитозана. // Nature

     

    Статья, присланная в Nature Communications группой сотрудников Университета штата Вашингтон (США), возглавляемой профессором Марко Роланди, содержит описание и испытательные характеристики первого действующего прототипа подобного устройства —протонного полевого транзистора на основе биополимера.

     

    Как и его электронный собрат, протонный полевой транзистор также состоит из трех базовых элементов — эмиттера зарядов, коллектора и базы. Размеры его также вполне микроскопические — 5 микронов в ширину, что примерно в 20 раз тоньше человеческого волоса. Однако носителями тока в нем являются уже не электроны, а протоны, при этом роль полупроводника играют модифицированные макромолекулы хитозана — аминосахарида, получаемого из панцирей ракообразных.

     

    Роль эмиттера и коллектора протонов в устройстве выполняют два электрода (хотя точнее было бы сказать протода) из гидрида палладия — прозрачного для протонов металводородного соединения. Два контакты из гидрида палладия соединены биополимерным мостом из хитозана. Молекулярные волокна хитозана за счет абсорбции воды образуют множественные водородные связи, по которым благодаря механизму Гротгуса (см. справку) и мигрируют протоны.

     

    Механизм Гротгуса

    Механизм Гротгуса — механизм переноса протонов или же протонных дефектов в средах, где имеется водородная связь. Этот физический механизм был впервые предсказан Теодором...

     

    При подаче напряжения на базу, изолированную от хитозана слоем оксида кремния, возникает электрическое поле и ток протонов в биополимере прекращается — мост работает в режиме Off. При отключении напряжения транзистор работает в режиме On.

     

    Таким образом, управляя электрическим полем, можно управлять и потоком протонов между эмиттером и коллектором — аналогично тому, как это происходит в полевых транзисторах.

     

    Как видим, протонный полевой транзистор на биополимере представляет собой кремнийорганический гибрид — устройство, сочетающее неорганические и органические материалы и выполняющее функции прозрачного протон-электронного интерфейса. Такой транзистор можно использовать для управления протонным током, при этом сигналом, управляющим каким-нибудь биопроцессом, использующим протонную сигнальную систему, будет электрический сигнал, что в отдаленной перспективе позволит синтезировать кремнийорганические, то есть бионические, системы управления.

     

    Хитозан

    Молекула хитозана содержит в себе большое количество свободных аминогрупп, что позволяет ему связывать ионы водорода и приобретать избыточный положительный заряд. Отсюда свойство...

     

    Сейчас говорить о таких возможностях слишком рано: «креветочный» транзистор реализует самые базовые функции по управлению сигналами, и еще непонятно, можно ли эти функции сильно усложнить и, например, создать протонный аналог электронного p-n-транзистора, сделав бутерброд из биополимеров с разными проводными свойствами.

     

    По заявлению ученых, именно в этом направлении — создании устройств, позволяющих электронике полноценно взаимодействовать с живой материей, — конструкторы первого протонного кремнийорганического транзистора и будут двигаться.

     

    Иван Куликов

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    ТЕМАТИЧЕСКИЕ НОМЕРА

    Полимеры для автопрома

    Индустрия «автопластиков»

    Пластики в медицине

    Полимеры на службе здоровья

    Полимерные трубы

    Борьба за коммуникации

    Полиуретаны

    Класс высоких свойств

    Полимеры в электронике

    «Электропластики» и прогресс

    Индустрия полиэфиров

    Царство полиэфиров

    Стеклопластики

    Легкие и прочные

    Экструзия профилей

    «Профильные» технологии

    Пресс-формы

    Оснастка: технологии и сервис

    Нетканые материалы

    Мир нетканых материалов

    Термопластавтоматы

    Оборудование для литья под давлением

    Полиолефины

    Базовый пласт

    Экструзия пленок

    Слои прогресса

    Конструкционные пластики

    Детали конструктора

    НАНОТЕХНОЛОГИИ

    Под знаком НАНО

    КабельПРОМ

    Применение и переработка полимеров

    Эластичные технологии

    Каучуки и резины

    Древесно-полимерные композиты

    «Жидкое дерево»

    Индустрия «ИСКОЖ»

    Искусственные кожи, клеенки

    Адгезивы

    Революция в технологиях сборки

    Все номера
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved