Новые технологии переработки пластмасс
ПОИСК    
На главную
НАВИГАЦИЯ

НОВЫЕ ТЕХНОЛОГИИ

  Новинки
  Технологии

ПОДБОР ОБОРУДОВАНИЯ

  Блоги производителей
  Поставщики
  Производители

ТЕНДЕНЦИИ РЫНКА

  Мнения и оценки
  Новости и статистика

СОТРУДНИЧЕСТВО

  Реклама на сайте
  Для авторов
  Контакты

СПРАВОЧНАЯ

  Классификатор продукции
  Термопласты
  Добавки
  Процессы
  Нормы и ГОСТы
  Классификаторы
ОБЗОРЫ РЫНКОВ
  • Анализ рынка сывороточного протеина в России
  • Исследование рынка кормовых отходов кукурузы в России
  • Исследование рынка крахмала из восковидной кукурузы в России
  • Исследование рынка восковидной кукурузы в России
  • Анализ рынка сорбиновой кислоты в России
  • Исследование рынка силиконовых герметиков в России
  • Исследование рынка синтетических каучуков в России
  • Анализ рынка силиконовых ЛКМ в России
  • Исследование рынка рынка силиконовых эмульсий в России
  • Анализ рынка цитрата кальция в России
    Все отчеты
    ОТЧЕТЫ ПО ТЕМАМ
  • Другая продукция
  • Литье под давлением, ротоформование
  • Пленки, листы
  • Профили
  • Тканные и нетканные материалы
  • Индустрия искож
  • Вспененные пластики
  • Трубы
      Экспорт статей (rss)
    1. ФРУКТОЗА ВРЕДНЕЕ САХАРА
    2. МОЩНЕЙШАЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ В РОССИИ
    3. ВОЗДЕЙСТВИЕ КОФЕИНА
    4. ЗАЩИТА СОЕВЫХ ПОСЕВОВ
    5. ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории [Аk

    ТЕМАТИЧЕСКИЕ НОМЕРА

    ТЕРМОПЛАСТАВТОМАТЫ

    Оборудование для литья под давлением
    ->

    Добро пожаловать в этот тематический раздел! Он посвящен оборудованию для литья под давлением -  ТЕРМОПЛАСТАВТОМАТАМ (ТПА). Сегодня этих машины незаменимы в переработке пластмасс, с их помощью производят широкую гамму изделий – от товаров первой необходимости до различных деталей. За кажущейся простотой термопластавтомата стоит сложнейший механизм, по техническим свойствам сопоставимый с технологией создания ракет. При этом прогресс в производстве ТПА не стоит на месте – на рынке постоянно появляются новые, более совершенные машины, с новыми возможностями. В этом разделе вы узнаете о прогрессе в данной сфере, новых предложениях ведущих производителей, новостях ведущих игроков рынка.

    Список сообщений |

    23.02.2008

    Особенности литья крупногабаритных корпусных деталей с тонкостенными решетками

    Моделирование процесса литья деталей высокой сложности может быть проведено с достаточной точностью методами современного конечноэлементного анализа. В данной работе анализ выполнялся с помощью программного продукта MPI/Flow фирмы Moldflow. Для анализа использовалась упрощенная модель реального корпуса телевизора под кинескоп 20” с толщиной основных стенок 3 - 3.5 мм. Модель содержала тонкостенную решетку динамика в нижней части корпуса, вентиляционную решетку и другие типовые конструктивные элементы (рис. 1). Объем модели составлял 628 см3. В отличие от реальной детали в модель не были включены ребра, бобышки, различные отверстия. Материал детали: ударопрочный полистирол HI 425 TVG фирмы Kumho Chemicals, ПТР = 9.5 г/10 мин (200 оС, 5 кг), температура потери текучести расплава Tno-flow = 136 оС.

    Рис. 1. Конечноэлементная модель детали
     

    Рассматривались различные варианты мест впуска для холодноканальной литниковой системы с туннельными литниками. Выбор мест впуска осуществлялся так, чтобы обеспечивался примерный баланс потоков в отливке. Скорость впрыска оптимизировалась по методике фирмы Moldflow. Анализ выполнялся при скорости впрыска 314 см3/с. Применение более высоких скоростей впрыска для данной детали нежелательно, так как это приводит к высоким скоростям сдвига на впускном литнике, что может вызывать деструкцию материала (предполагалось, что диаметр впускного литника не превышает 2 мм).

    Решетка динамика может содержать сотни и даже тысячи отверстий, поэтому пригодная для анализа конечноэлементная модель (сетка) трудна в построении и содержит большое число элементов, что значительно замедляет расчеты. Однако даже самая плотная сетка не дает возможности точно смоделировать течение расплава в подобных конструкциях. Современные программные продукты для анализа течения, базирующиеся на модели Хеле-Шоу, позволяют использовать два типа элементов: треугольные или четырехугольные элементы типа «оболочка» (двумерное течение) и лучевые элементы (одномерное течение). Течение в треугольных элементах моделируется как неизотермическое течение сжимаемой жидкости в плоской бесконечной щели заданной толщины /1/ и не соответствует условиям охлаждения расплава при заполнении решетки, в частности дает существенно заниженные потери давления. Одномерные элементы, обычно используемые для моделирования литниковых каналов, дают лучшее соответствие характеру течения, но могут применяться только в случае простых решеток с прямоугольными отверстиями. Появившиеся в последние годы программные продукты для анализа тетраэдрических сеток (трехмерное течение), базирующиеся на уравнениях Навье-Стокса, практически не применяются для деталей высокой сложности главным образом из-за ограниченной мощности используемых компьютерных систем.

    Тем не менее, моделирование течения расплава в решетке произвольной формы может быть выполнено с достаточно высокой точностью при замене фактической толщины стенки решетки эквивалентной толщиной. При таком подходе можно заменить модель решетки сплошной сеткой (без отверстий), толщина которой рассчитывается так, чтобы обеспечивались те же потери давления расплава, что и при заполнении реальной решетки. Эквивалентная толщина (Нэкв) определятся через коэффициент формы (Кф) следующим образом: Нэкв = Нэфф/Кф, где Нэфф =V/Sпроекц, Кф =Sпов/2 Sпроекц, V – объем решетки, Sпроекц – площадь проекции решетки, Sпов – площадь поверхности решетки /2/. Эквивалентная толщина решетки оказывается намного меньше ее фактической толщины. Например, для решетки с фактической толщиной 1.5 мм, имеющей круглые отверстия диаметром 0.5 мм и расстояния между отверстиями 1 мм, эквивалентная толщина равна 0.95 мм. В данной работе использовалась решетка с эквивалентной толщиной 0.9 мм, что соответствует фактической толщине 1.35 мм.

    Расчеты показали, что для всех рассмотренных вариантов мест впуска тонкостенная решетка динамика заполняется в последнюю очередь. Это связано с хорошо известным явлением замедленного течения расплава в тонкостенных областях (hesitation effect) при разветвлении литьевого канала на толстый и тонкий. Подобный эффект наблюдается и на других участках корпусных деталей, имеющих малую толщину (ребрах, бобышках и т.д.), но именно на решетке динамика он часто приводит к недоливу. Причиной этого являются: малое значение эквивалентной толщины решетки, большая протяженность тонкостенной области, близость решетки к месту впуска.

    Степень проявления эффекта замедленного течения повышается с уменьшением расстояния от решетки динамика до места впуска, уменьшением эквивалентной толщины решетки, снижением текучести расплава, увеличением толщин основных стенок детали после разветвления потока.

    Заполняемость детали может быть улучшена при повышении температур расплава и формы. Однако на практике невысокая термостабильность материала и использование литьевых машин с большим объемом впрыска не позволяют применять высокие температуры расплава. Применение высоких температур формы приводит к появлению следов от толкателей в областях с затрудненным отводом тепла: в углах, вблизи высоких ребер, бобышек и т.д. Таким образом, необходимо обеспечить заполняемость изделия при температурах расплава и формы, соответствующих средним значениям диапазона переработки материала.

    Расчеты показали, что наилучшие результаты по заполняемости детали получаются при двух местах впуска, максимально удаленных от решетки динамика (вариант в на рис. 2). Это единственный из рассмотренных вариантов, при котором решетка динамика полностью заполняется при средних температурах расплава (Тр = 230 oC) и формы (Tф = 60 oC). Для ударопрочного полистирола и других полистирольных пластиков, являющихся аморфными материалами, особенности растекания расплава, такие как направление течения, радиальное растекание и др., не оказывают большого влияния на качество детали. Оказалось, что недолив на решетке связан не с большими потерями давления при заполнении детали, а с быстрым остыванием фронта расплава при течении в тонкостенной области.

    Рис. 2. Температура фронта расплава:
    а) три места впуска – недолив, б) два места впуска – недолив, в) два места впуска – 100% изделия заполнено. Места впуска обозначены стрелками. Цифрами указаны значения температур. 
     

    Потери давления при заполнении детали составляют 34 МПа, что намного меньше допустимых потерь давления для обычной литьевой машины. Для снижения себестоимости детали толщина основных стенок может быть уменьшена без ухудшения качества отливки.

    Большое влияние на заполняемость детали имеют условия переключения на выдержку под давлением /3/. Обычно переключение с режима впрыска (режим управления скоростью впрыска) на выдержку под давлением (режим управления давлением) происходит не позже 98-99% заполнения, оставшаяся часть детали заполняется при убывающей скорости впрыска. Но заполнение основной части решетки динамика происходит после 99% заполнения детали, т.е. при снижении скорости впрыска, что еще больше усугубляет проблему. Для получения качественной отливки необходимо точно подобрать момент переключения на выдержку как можно ближе к окончанию заполнения, задать достаточно высокое давление в начальный момент выдержки под давлением (оно должно быть выше давления в момент окончания впрыска). Желательно использовать переключение по положению шнека. Такой технологический процесс накладывает особые требования к литьевой машине, пресс-форме и полимеру. Машина должна обеспечивать высокую точность и надежность регулировки, достаточное усилие замыкания. Необходимо предусмотреть хорошую вентиляцию пресс-формы. Важную роль играет также стабильность реологических показателей материала детали.

    И.А. Барвинский, И.Е. Барвинская
    abuniversal.webzone.ru

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    ТЕМАТИЧЕСКИЕ НОМЕРА

    Полимеры для автопрома

    Индустрия «автопластиков»

    Пластики в медицине

    Полимеры на службе здоровья

    Полимерные трубы

    Борьба за коммуникации

    Полиуретаны

    Класс высоких свойств

    Полимеры в электронике

    «Электропластики» и прогресс

    Индустрия полиэфиров

    Царство полиэфиров

    Стеклопластики

    Легкие и прочные

    Экструзия профилей

    «Профильные» технологии

    Пресс-формы

    Оснастка: технологии и сервис

    Нетканые материалы

    Мир нетканых материалов

    Термопластавтоматы

    Оборудование для литья под давлением

    Полиолефины

    Базовый пласт

    Экструзия пленок

    Слои прогресса

    Конструкционные пластики

    Детали конструктора

    НАНОТЕХНОЛОГИИ

    Под знаком НАНО

    КабельПРОМ

    Применение и переработка полимеров

    Эластичные технологии

    Каучуки и резины

    Древесно-полимерные композиты

    «Жидкое дерево»

    Индустрия «ИСКОЖ»

    Искусственные кожи, клеенки

    Адгезивы

    Революция в технологиях сборки

    Все номера
    Rambler's Top100
    Copyright © Polymeri.ru 2006. All Rights Reserved